T-S fuzzy model identification based on a novel fuzzy c-regression model clustering algorithm

نویسندگان

  • Chaoshun Li
  • Jianzhong Zhou
  • Xiuqiao Xiang
  • Qingqing Li
  • Xueli An
چکیده

This paper proposes a novel approach for identification of Takagi–Sugeno (T–S) fuzzy model, which is based on a new fuzzy c-regression model (FCRM) clustering algorithm. The clustering prototype in fuzzy space partition is hyper-plane, so FCRM clustering technique is more suitable to be applied in premise parameters identification of T–S fuzzy model. A new FCRM clustering algorithm (NFCRMA) is presented, which is deduced from the fuzzy clustering objective function of FCRM with Lagrange multiplier rule, possessing integrative and concise structure. The proposed approach consists mainly of two steps: premise parameter identification and consequent parameter identification. The NFCRMA is utilized to partition the input–output data and identify the premise parameters, which can discover the real structure of the training data; on the other hand, orthogonal least square is exploited to identify the consequent parameters. Finally, some examples are given to verify the validity of the proposed modeling approach, and the results show the new approach is very efficient and of high accuracy. & 2009 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Cluster Validity Criterion for Fuzzy C-Regression Models Clustering and Its Application to Fuzzy Model Identification

In this paper, a new cluster validity criterion for fuzzy c-regression models (FCRM) clustering algorithm with affine linear functional cluster representatives is proposed. The proposed cluster validity criterion calculates the overall compactness and separateness of the FCRM partition and then determines the appropriate number of clusters. Besides, its application to fuzzy model identification...

متن کامل

ADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE

The  tunnel  boring  machine  (TBM)  penetration  rate  estimation  is  one  of  the  crucial  and complex  tasks  encountered  frequently  to  excavate  the  mechanical  tunnels.  Estimating  the machine  penetration  rate  may  reduce  the  risks  related  to  high  capital  costs  typical  for excavation  operation.  Thus  establishing  a  relationship  between  rock  properties  and  TBM pe...

متن کامل

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

Bilateral Weighted Fuzzy C-Means Clustering

Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...

متن کامل

Hinging hyperplane based regression tree identified by fuzzy clustering and its application

Hierarchical fuzzy modeling techniques have great advantage since model accuracy and complexity can be easily controlled thanks to the transparent model structures. A novel tool for regression tree identification is proposed based on the synergistic combination of fuzzy c-regression clustering and the concept of hierarchical modeling. In a special case (c = 2), fuzzy c-regression clustering can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eng. Appl. of AI

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2009