T-S fuzzy model identification based on a novel fuzzy c-regression model clustering algorithm
نویسندگان
چکیده
This paper proposes a novel approach for identification of Takagi–Sugeno (T–S) fuzzy model, which is based on a new fuzzy c-regression model (FCRM) clustering algorithm. The clustering prototype in fuzzy space partition is hyper-plane, so FCRM clustering technique is more suitable to be applied in premise parameters identification of T–S fuzzy model. A new FCRM clustering algorithm (NFCRMA) is presented, which is deduced from the fuzzy clustering objective function of FCRM with Lagrange multiplier rule, possessing integrative and concise structure. The proposed approach consists mainly of two steps: premise parameter identification and consequent parameter identification. The NFCRMA is utilized to partition the input–output data and identify the premise parameters, which can discover the real structure of the training data; on the other hand, orthogonal least square is exploited to identify the consequent parameters. Finally, some examples are given to verify the validity of the proposed modeling approach, and the results show the new approach is very efficient and of high accuracy. & 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
A New Cluster Validity Criterion for Fuzzy C-Regression Models Clustering and Its Application to Fuzzy Model Identification
In this paper, a new cluster validity criterion for fuzzy c-regression models (FCRM) clustering algorithm with affine linear functional cluster representatives is proposed. The proposed cluster validity criterion calculates the overall compactness and separateness of the FCRM partition and then determines the appropriate number of clusters. Besides, its application to fuzzy model identification...
متن کاملADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE
The tunnel boring machine (TBM) penetration rate estimation is one of the crucial and complex tasks encountered frequently to excavate the mechanical tunnels. Estimating the machine penetration rate may reduce the risks related to high capital costs typical for excavation operation. Thus establishing a relationship between rock properties and TBM pe...
متن کاملProposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کاملBilateral Weighted Fuzzy C-Means Clustering
Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...
متن کاملHinging hyperplane based regression tree identified by fuzzy clustering and its application
Hierarchical fuzzy modeling techniques have great advantage since model accuracy and complexity can be easily controlled thanks to the transparent model structures. A novel tool for regression tree identification is proposed based on the synergistic combination of fuzzy c-regression clustering and the concept of hierarchical modeling. In a special case (c = 2), fuzzy c-regression clustering can...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eng. Appl. of AI
دوره 22 شماره
صفحات -
تاریخ انتشار 2009